Multiple Integrals and their
Applications
GBO0

5.1 INTRODUCTION TO DEFINITE INTEGRALS AND DOUBLE INTEGRALS
Definite Integrals

The concept of definite integral

I: f (x)dx ..(1)
is physically the area under a curve y = f(x), (say), the
x-axis and the two ordinates x = aand x = b. It is
defined as the limit of the sum
f(x)0x, + f(X,)0x%, + ... + f(x,)dX,

when n - o and each of the lengths &x,, &X,, ..., X, o
tends to zero.

Here dx,, dX,, ..., 0X, are n subdivisions into which the range of integration has been
divided and x;, X,, ..., X, are the values of x lying respectively in the Ist, 2nd, ..., nth
subintervals.

Fig. 5.1

Double Integrals

A double integral is the counter part of the above A
definition in two dimensions. :

Let f(x, y) be a single valued and bounded function of
two independent variables x and y defined in a closed
region A in xy plane. Let A be divided into n elementary
areas 0A;, 0A,, ..., OA,.

Let (x,, y,) be any point inside the rth elementary area 0 X
OA,. Fig. 5.2

Consider the sum

f(xl,yl)ESA1 + f(xz,yz)ESA2 +.+ f(xn,yn)é,o\1 = if (xr,yr)éAr ..(2)

Then the limit of the sum (2), if exists, as n - o and each sub-elementary area approaches

fa

t
fr
I

e

to zero, is termed as ‘double integral’ of f(X, y) over the region A and expressed as J'JA' f (x,y)dA :

355
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356 Engineering Mathematics through Applications

thus  J[T0eY)dA= LS lxy)oA - (3)

3A, -0

Observations: Double integrals are of limited use if they are evaluated as the limit of the sum. However, they
are very useful for physical problems when they are evaluated by treating as successive single integrals.

Further just as the definite integral (1) can be interpreted as an area, similarly the double integrals (3) can be
interpreted as a volume (see Figs. 5.1 and 5.2).

5.2 EVALUATION OF DOUBLE INTEGRAL

Evaluation of double integral §1f (e y)dedy ,

R y-axis
is discussed under following three possible cases: I
Case I: When the region R is bounded by two continuous
curves y = ((x) and y = ¢(x) and the two lines (ordinates)
x=aand x =h.

In such a case, integration is first performed with
respect to y keeping x as a constant and then the
resulting integral is integrated within the limits x = a
and x = b. o

Mathematically expressed as:

i1 boy)xay = [30 1 (x.y)ay ) ox

b
=a
Geometrically the process is shown in Fig. 5.3,
where integration is carried out from inner rectangle
(i.e., along the one edge of the ‘vertical strip PQ’ from
P to Q) to the outer rectangle.

Case 2: When the region R is bounded by two continuous
curves X = @(y) and x = Y (y) and the two lines (abscissa)
y=aandy=h.

In such a case, integration is first performed with
respect to Xx. keeping y as a constant and then the [6) X = axis
resulting integral is integrated between the two limits Fig. 5.4
y=aandy=h.

Mathematically expressed as:

y=b [k=1(y) O
”f(x,y)dxdy: E jf(x,y)ddey y=a
R y=a Lix=6(y)

Geometrically the process is shown in Fig. 5.4,
where integration is carried out from inner rectangle
(i.e., along the one edge of the horizontal strip PQ y=»
from P to Q) to the outer rectangle.

Case 3: When both pairs of limits are constants, the region o x=a x=b xaxis
of integration is the rectangle ABCD (say). Fig. 5.5
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Multiple Integrals and their Applications 357

In this case, it is immaterial whether f(x, y) is integrated first with respect to x or vy, the
result is unaltered in both the cases (Fig. 5.5).

Observations: While calculating double integral, in either case, we proceed outwards from the innermost
integration and this concept can be generalized to repeated integrals with three or more variable also.

1+x 1
Example 1: Evaluate Jt -(—5dydx [Madras 2000; Rajasthan 2005].
1+x%+y?

Solution: Clearly, here y = f(x) varies from 0 to /1 + x2

and finally x (as an independent variable) goes between 0
to 1.

0, /f 1 O
= 7d d
| ID (Lo )+ y2 VA )
(0,1)
[0 /1+x2 1 O
— L 2 — 2
J)H[ 7y ddeX,a 1+ x?) o | @,0)

(0, 0) (10) (1.732,0)

r%tan‘lya dx Fig. 5.6
.r \/— -tan™ Oadx

et ol
_ogdx=ggog{x+m}g

(L O
_[) J1+x2 Ll
LS
=—log(l++/2
;0g(1+2)
Example 2: Evaluate Hezx+3y dxdy over the triangle bounded by the lines x =0, y = 0 and
X+y=1

Solution: Here the region of integration is the triangle OABO as the line x + y = 1 intersects
the axes at points (1, 0) and (0, 1). Thus, precisely the region R (say) can be expressed as:

0<x<1,0=<y<1-x (Fig5.7).

Y
| = [[e>*¥dxdy |
OJ N
R BN
1[1x 0 :‘. 15
- e2x+3ydy X x=0 .
Ig H -:
1 -X >
— D]- 2X+3y |j O
= e dx (,0)
I8 g
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:%@eS ~ 3¢2 +1gzéﬂze +1)(e - 1P

Example 3: Evaluate the integral [[Xy(x+y)dxdy over the area between the curves y = x
R

and y = X.
Solution: We have y = x? and y = x which implies )\’
x?—x=0 ie. eitherx=0 or x=1
Further, if x =0theny =0; if x = 1 then y = 1. Means the y = x2 .
two curves intersect at points (0, 0), (1, 1). Y
O The region R of integration is doted and can be
expressed as: 0 < x <1, X<y < X. AL 1)
1|:| X 0 - /
+y)dxdy = +y)dyd
. Jpobery)axy Laﬁzxy(x ¥)ey e e,
0(0,0)
2 y
‘r? +X Ddx Fig. 5.8
4
L S e
ﬁ_ 3
:‘r%x“—lx"‘ 1 7de
0 2 3
JB,¢ 1x 10 1 1 1.3
5 27 38H 6 14 24 56
) ) X2 yz
Example 4: Evaluate [[(x+y) dxdy over the area bounded by the ellipse L
[UP Tech. 2004, 05; KUK, 2009]
X2 y?
Solution: For the given ellipse Z +b_2 =1, the region of integration can be considered as

www.Jntufastupdates.com



Multiple Integrals and their Applications 359

52
bounded by the curves y = =b,[1- a7~’ y= b‘/l— v and finally x goes from — ato a

N=ara

0 I—”(x+y dxdy = I H[ P x2/a2(x +y? +2xy)ddex

b1 x2/a2 v d |:|d
+ X

J. gb«/l x2/a2 yz) yH
[Here [2xydy =0 as it has the same integral value for both limits i.e., the term xy, which is
an odd function of y, on integration gives a zero value.] Y

a by/1- x2/a2

:4.[Hr (x2 +y2)dygdx

. "4ID<2b§l LSt S

On putting x = asin@, dx = acosO dO; we get

/2 3
| = 4b-[ aazsinzecose) +%cos36§acosede
0

- V205 02 204 0% D
—4ab.L B sin 0cos20 + 3 cos eade

L i

Now using formula I sinP xcos!xdx = 2
0 ‘Dp+q+2d
2

On+1 5

2

and I cosxdx = |2 DT _ _

0 Eh+2d 2, (in particular when p=0, g=n)

0o 0O

2ol

H
J'J'(x+y)2dxdy=4ab%2 - 3 o E

N | W
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0 VYT 3T 0

? "0
b2 2 P22 ..|B10
5 221 3 221 g ‘o =Vm
O O
2 Teb(a® +b?)
= sab % - —
H16 161 4
ASSIGNMENT 1
dxdy

1. Evaluate .[.[\/1 x2

2. Evaluate [ [ xy dxdy, where A is the domain bounded by the x-axis, ordinate x = 2a and
R

the curve x? = 4ay. [M.D.U., 2000]

3. Evaluate J’J’eax"bydydx , Where R is the area of the triangle x =0,y =0, ax+ by =1 (a > 0,
b > 0). [Hint: See example 2]

21 12
4. Prove that [f(xy +e)dydx =" [fy +e')dxdy
13 31

5. Show that J-dXJ- =) dyij'dyj'

6. Evaluate g g e ) dxdy [Hint: Put x3(1 + y?) = t, taking y as const.]

5.3 CHANGE OF ORDER OF INTEGRATION IN DOUBLE INTEGRALS

The concept of change of order of integration evolved to help in handling typical integrals
occurring in evaluation of double integrals

When the limits of given integral ja Qﬂy qx) (x,y)dydx are clearly drawn and the region

of integration is demarcated, then we can well change the order of integration be performing
integration first with respect to x as a function of y (along the horizontal strip PQ from P to
Q) and then with respect to y from c to d.

Mathematically expressed as:

I-J'J;_ ) f (x,y)dxdy.

Sometimes the demarcated region may have to be split into two-to-three parts (as the case
may be) for defining new limits for each region in the changed order.
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1 J1-x2

Example 5: Evaluate the integral [ [ Y’dydx by changing the order of integration.
0 0
[KUK, 2000; NIT Kurukshetra, 2010]

Solution: In the above integral, y on vertical strip (say PQ) varies as a function of x and then
the strip slides between x =0 to x = 1.

Here y = 0 is the x-axis and y =/1-x2 i.e, x? + y? = 1 is the circle.

In the changed order, the strip becomes P’Q’, P’ resting on the curve x =0, Q’ on the circle

x =,/1-y? and finally the strip P’Q’ sliding between y =0to y = 1.

1%
1 , -y [
I =[y?0 [ dxgdy L@
D JO' |:| JO' |:| ;’. .'":, I
1 : P
I =[y [x]ﬂdy - N y=0 _
0 P | >X
1 1 ]
I:Iyz(l—y2)2 dx x=1
0
Substitute y = sin 6, so that dy = cos 0 d0 and 0 varies from 0 to %[ x=0
. Fig. 5.10
2
= [sin®@cos* 6dO
0
_-)@e-)n_n
412 2 16
gn
0. 2 gipp _(P-DY(P-3)..@-D@-3) =
sinBcosBdd = , only if both p and g are + ve even integers]
E{ P+g)p+q-2)...... 2

4a 2Jax
Example 6: Evaluate -!;Ixz dydx by changing the order of integration.

4a
[M.D.U. 2000; PTU, 2009]

Solution: In the given integral, over the vertical

strip PQ (say), if y changes as a function of x such
2

. X .
that P lies on the curve ¥ =£ and Q lies on the

curve y = 2{/ax and finally the strip slides between
x =0to x = 4a.

X2 )
Here the curve Y =—— i.e. x? =4ay is a parabola

4a
with
y=0 implying x=0 g
y =4a implying x==x4a H Fig. 5.11
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i.e., it passes through (0, 0) (4a, 4a), (- 4a, 4a).
Likewise, the curve y =2{ax or y?=4ax is also a parabola with
x=0 0 y=0andx=4a O y==x4a
i.e., it passes through (0, 0), (4a, 4a), (4a, — 4a).
Clearly the two curves are bounded at (0, 0) and (4a, 4a).

0 On changing the order of integration over the strip P'Q’, x changes as a function of y

such that P’ lies on the curve y? = 4ax and Q’ lies on the curve x? = 4ay and finally P’Q’ slides
between y =0to y = 4a.

:2@ O
whence I=I O .. dxody

0 =X
U

4a a
:Lvﬂwy

4al]
J;> 52\/7_4aady
o s f*
=l -2t

° 12a

5 2 8
_32a% _ 168 _ 16a°
3 3 3

= 4—f (4a)z - 1—;71(4:71)3

W

Example 7: Evaluate .U (x* +y?) dxdy by changing the order of integration.
a

Solution: In the given integral jgﬂl—/a(xz +a2)dx dy, y varies along vertical strip PQ as a

function of x and finally x as an independent variable varies from x =0 to x = a.
Here y = x/a i.e. x = ay is a straight line and y = ,/x/a

A y=vVxia
X = ay? is a parabola. \
For x=ay; x=0 0 y=0andx=a O y=1 \ y=1
Means the straight line passes through (0, 0), (a, 1). oz o
Forx=ay? x=0 0O y=0andx=a 0 y=+1
Means the parabola passes through (0, 0), (a, 1), (a, — 1).. o/ P y=0
Further, the two curves x = ay and x = ay? intersect at common ©0.0) >X
points (0, 0) and (a, 1).
On changing the order of integration, x=a
a _Jx/a y=1[] _x=ay 0
J(;J:(/a (XZ " yz)dXdy =J;/:0 acayz (XZ * yz)dXdyE —~
(at P’) Fig. 5.12
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1D(3

= H—+xy a dy
-f % a)sl)‘ + ay-yzé‘ o5 (@) +ay wz%ﬂy
+ @y?’—%syﬁ—ay“aiy

y’ ay5ﬂ

_AOw

=[5

= H’E_ a3_
%— S Q,

Dja:4 3><7H S %

=822 8 (50,7)
28 20 140

y2
dy dx. [SVTU, 2006]

a
Example 8: Evaluate —
P [N e
Solution: In the above integral, y on the vertical strip (say PQ) varies as a function of x and

then the strip slides between x =0to x= a
ax is the parabola and the curve y = a is the straight line

Here the curve y =Jax ie, y>=
On the parabola, x=0 0 y=0,x=a O y==a i.e., the parabola passes through points

(0, 0), (a, @) and (a, — a).
On changing the order of integration,

B y2 EU
I = 8 —=———dxLdy
‘IO a'é;()) Wyi-axt g y-axis
(a, a)
2 TS y=a
a|:| Y2 0 R
:J; Doay;—zé dxCdy il
0 )
g B g ]
a y=0 :
0O > X-aXIS
2 (0! O) 4]
ayZ . X |:yF I>I<
:J; ; %ln—l Dyz DD dy |>|< (a’ _a)
0 0
g H;E@ Fig. 5.13
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ayz . .
:J(') ;@ln‘ll—sm‘logdy

T2
6

dy =

2y2 1 ny[
o el

1 2-x
Example 9: Change the order of integration of f[ XY dydX and hence evaluate the same.
0 x?

[KUK, 2002; Cochin, 2005; PTU, 2005; UP Tech, 2005; SVTU, 2007]

2-x 0
Solution: In the given integral JEI xydyadx, on the vertical strip PQ(say), y varies as a
04 x?

function of x and finally x as an independent variable, )(
varies from 0 to 1.
Here the curve y = x? is a parabola with B(0, 2) y=2
y=0 implying x=0 _ ; 0
y=1 implying x==1_ . N o] ¥=2
i.e., it passes through (0, 0), (1, 1), (- 1, 1).ﬂ A | y=1
Likewise, the curve y = 2 — x is straight line Sl | AING D
with P——7< y=2-x
y=00 x=2[ L y=0 \(2.0) _
y=10 x=1( 0 N
y=2 0 x=0f L x=1
i.e. it passes though (1, 1), (2, 0) and (0, 2) Fig. 5.14

On changing the order integration, the area OABO is divided into two parts OACO and
ABCA. In the area OACO, on the strip P’Q’, x changes as a function of y from x=0to x = \/y :
Finally y goesfromy=0toy = 1.

Likewise in the area ABCA, over the strip p”Q”, x changes as a function of y from x = 0 to
x = 2 -y and finally the strip P”Q” slides between y =1toy = 2.

0 }E?xy dedy + JZ'E Jz'_;/(y dedy
oulo 1-0
2|20
[l e

6 2 3
-1,5_3
6 24 8
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1 J2-x? X
Example 10: Evaluate IOI Wdydx by changing order of integration.
X
[KUK, 2000; MDU, 2003; JNTU, 2005; NIT Kurukshetra, 2008]

Soluton: Clearly over the strip PQ, y varies as a
function of x such that P lies on the curve y = x and Q
lies on the curve y=4/2-x2 and PQ slides between
ordinates x =0 and x = 1.

The curves are y = x, a straight line and y = /2 - x? ,
i.e. X2+ y2=2 acircle.

The common points of intersection of the two are
(0, 0) and (1, 1).

On changing the order of integration, the same
region ONMO is divided into two parts ONLO and
LNML with horizontal strips P’Q’ and P”Q” sliding

between y =0to y=1and y =1to y=+/2 respecti-
vely.

x=0
Fig. 5.15

B y X N2 -y X
whence ' —JjJ; ‘\/XiﬁydedY*'J; J; 7\/m dxdy

X _d(y. o%
Now the exp. x2—+yz_d_x(x ty )2
22
el
2-y?
| =J;)15X2 +y2);%1 dy +JI/7 gxz +y2)2 g dy
1 2
:(x/§—1)y—2 +3 2y—y?2§)r=1(ﬁ_1)
0
a a+m

Example 11: Evaluate LI e dydx by changing the order of integration.
a—.ja’—y’

=a |:| :a+.'a2—y2 d |:|
ion: Gi x
Solution: Given J;V:o cmamfTF de
Clearly in the region under consideration, strip PQ is horizontal with point P lying on the

curve x =a-./a®>—y? and point Q lying on the curve x =a+./a —y? and finally this strip
slides between two abscissa y = 0 and y = a as shown in Fig 5.16.
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Now, for changing the order of integration, the Y
region of integration under consideration is same but
this time the strip is P’Q’ (vertical) which is a function ©
of x with extremities P’ and Q' at y =0 and x| s
y =+/2ax —x2 respectively and slides between x = 0 P : §
and x = 2a. ‘: o ' > X
2a [ J2ax—-x? 0 2a  ~2ax-x? © é) @ Oo) P’ B (24, 0) g
Thus I = J’H ] ddex = [BE dx ’ ’
0 0 0 0
2a 2a \
= [~J2ax = x? dx = [v/x+/2a - x dx X +y? = 2ax
0 0
Take JX =+/2asin@ so that dx = 4asin® cos6 db, Fig. 5.16
Tt
Also, Forx:O,G:OandfOFXZZa,9=E
m
2
Therefore, | = [</2asin®3/2a - 2asin® 6 [4asin6 [tos dB
0
2 J2-1n_ et
2 2-1)(2-1)n_ m
— Qa2 .} 2 - 8a2 E(i— L
8a£sm Bcos 6db Ha-2) 2 2
O m
2 — — — —
Husing] sin® cos' 06 = (b-Dp=3)...0-H@=3... 0
5 0 E+PP+g=2) i 2 0
H

p and q both positive even integers

3.4y
Example 12: Changing the order of integration, evaluate [ [ (x+y)dxdy.
0 1

[MDU, 2001; Delhi, 2002; Anna, 2003; VTU, 2005]

Solution: Clearly in the given form of integral, x y

changes as a function of y (viz. x = f(y) and y as an 4

independent variable changes from 0 to 3. ] ca, 3)
Thus, the two curves are the straight line x = 1 and » y=3

the parabola, x =./4—-y and the common area under
consideration is ABQCA.

For changing the order of integration, we need to &
convert the horizontal strip PQ to a vertical strip P'Q’ g y=0

over which y changes as a function of x and it slides for ol Al P [0
values of x =1 to x = 2 as shown in Fig. 5.17.

Fig. 5.17
2[0,.(4-%) 2

D¢ T R
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5
+8X + 2 —ﬂxSEf
10 3

2(22 - ) —%(24 ~14)+8(2-1) +%(25 - 1) —%(23 -1)

_g_15,5,31_28_241
4 10 3 60
% aZ_yZ
Example 13: Evaluate | [ Iog(x2 +y2)dx dy(a>0) changing the order of integration.
0 0

[MDU, 2001]

Solution: Over the strip PQ (say), x changes as a function of y such that P lies on the curve
x =y and Q lies on the curve x = ./a? —y? and

Y
i i = y=—: L+
theHstrlp :Q slides betwee-n y O-toh I- N PRy a *,B .
ere the curves, x = y is a straight line /—- / [ff
x=0 Dy:OE 0N ~y=2
and X:iDy:iD / P AQ V2
\/§ ﬁa - ) y=0 X
Ua a © 8 PPA
i.e. it passes through (0, 0) and ' /5B ’
2 2 x=a
Also x =.[a2-y? Qe x?+ y?=a’is acircle —/

with centre (0, 0) and radius a.

Ua a
Thus, the two curves intersect at aﬁ fﬁ

On changing the order of integration, the same region OABO is divided into two parts

a
i and X=—

V2 V2

with vertical strips P’Q’ and P”Q” sliding between x =0to x = to x=a

respectively.

a/\?2

=

Whence, Iog X2 +y )Elddex ..

QJ’ log (x + y? Eﬂy@dx+I El[
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Now,

1 0
Ilog(x2 +y2)1dy = @og(xz +y2)Ey _J‘WZy Eydyg

Ist lind
Function Function
O y2+x2-x? 0O
=10 +y) =2 T v
0 1 0
=yl 2+y?) =2y + 2% [———ydyO
S G
:E/Iog(x2+y) 2y+2xza;tan‘1y% (2
On using (2),

an2 [

I, =J(') B/Iog(x2 + y2) -2y + 2x§an‘1§% dx

an2
:L Bklog 2x? - 2x + 2x tan™* 1ix

an2 h
:J' §<I092x2—2x+2x2§1x
[0]

a/ﬁ DT[ |:| a/J—

= xlog2x?dx +2 5 -1 x dx
L g Oz 0o
For first part, let 2x? = t so that 4x dx = dt and limits are t =0 and t = a2.
21a/v2
0 I Iogth—+2D” HX
2 0
On D 2
=2 (Iogt 1) g ~155, (By parts with logt = logt - 1)
a’ m? _ a?
==(loga® -1)+—-=
 (loga? —1)+ == == ..(3)
Agian, using (2),
- 4 2 . \2 4 )’Edaz_ix2
IZ—LM B/Iog(x +y)—2y+2x§an " dx .(4)
a ] (a2 —y2 []
n :I . /22 - X2 loga? — 2/a - x2 + 2xtan ™t Y& =Xy
anZ ] x O
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T
Let X = a sinB so that dx = acos® d6 and limits, ) to 5

asin®

/2_ 2 cein2
I @Ioga2 \/ —-a%sin? 0 +2asinOtan” wgacosede

2 2
:I & (log & —2)coszed6+a2-[ 2sin@cosOtan(cotB)do
w4 z

2(1+cos20)

174
= a?(loga® -2 7d6+a2 s n26tan‘1§an — -0 de
a (oga )_[n/4 5 S 2

2 20
:%(Iogaz—Z)% s”l ﬂ/ n/Llle—G%anGdG

Ist  Iind
Fun. Fun.
a o no_ 10 DD—COSZG w2, \[cos280
== (loga?-2)r ———— = + a2 -6 -1 98
2( g )le 40 2H8 2 am v Ve 5
@ On_10_a® (72 on DD c0s20[]
l, =< (loga? -2) &~ - =- < 2 -85
2 2(oga )D4 20 5 ). 608 0do o) , 0 s zero for both
the limits)
Ora? m? | &’ @ O v,
= log a? +— —-=loga’g——(sin2@).?
Hg 9% 4 T2 4 (sin26),
(lrta? M | & al 0, &
= loga? - — +% - " loga’g+ =
8 g 4 > ga'y 4 ...(5)
On using results (3) and (5), we get
=1 +1,
_ @2 2 _ &, T[a2 _ &0, Oma? , TR at_a ., 820
_EZIOQa ? 25+%Ioga 4 + ) T4 loga® + 45
2
:T"%Ioga2 e’ T[g (loga? -1)

2 2 1
=T%(2Ioga—1)=m%aoga—§g

Example 14: Evaluate by changing the order of integration. | xe™"dxdy
00
[VTU, 2004; UP Tech., 2005; SVTU, 2006; KUK, 2007; NIT Kurukshetra, 2007]
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) =f(x)=x 2
Solution: We write I I xe ™ /Ydxdy = I ‘C 10 xe ™ /Vdxdy

Here first integration is performed along the vertical strip with y as a function of x and
then x is bounded between x =0 to X = co.

We need to change, x as a function of y and finally the limits of y. Thus the desired
geometry is as follows:

In this case, the strip PQ changes to P’Q’ with x as function of y, x, = y and X, = « and
finally y varies from 0 to .

Therefore Integtral

| = [ [xe™/Ydxdy
Oy

,_ B x=y, t=y?,0
Put x° =t so that 2x dx = dt Further, for O y
X =00, t=00

| :I‘”J‘j oty ﬂ dy, A ‘

P 77777 Q
—t/y R TR
Sit= o | SRR
:J' ——@—e‘yguy Fig. 5.19
(By parts)
1
== 1—d
S
1 v
= Fye” —e yg“
1
= 2Ho) - (0-1)g= .
- i -— X. 1%
Example 15: Evaluate the integral .[0 IX iy Yy o x= oo
[NIT Jalandhar, 2004, 2005; VTU, 2007] < LY |
SR R [
Soluton: In the given integral, integration is performed first P Q |
with respect to y (as a function of x along the vertical strip say ol sl !
PQ, from P to Q) and then with respect to x from 0 to co. n N I
On changing the order, of integration integration is [ o :
performed first along the horizontal strip P'Q" (x as a function e ‘(0 0 A
of y) from P'to Q" and finally this strip P'Q" slides between '
the limitsy =0to y = oo, Fig. 5.20
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I = J:% Eﬁ dx@dy
[ o

_)/00
= -
_10

=-1(0-1)=1

1
a0

371

a
E le 16: Ch h fi ion in the double int | .
xample 16: Change the order of integration in the double integra J’:J' x,y)dxdy

[Rajasthan, 2006; KUK, 2004-05]

Solution: Clearly from the expressions given above,
the region of integration is described by a line which
starts from x = 0 and moving parallel to itself goes
over to x = 2a, and the extremities of the moving line
lie on the parts of the circle x? + y? — 2ax = 0 the parabola
y? = 2ax in the first quadrant.

For change and of order of integration, we need to
consider the same region as describe by a line moving
parallel to x-axis instead of Y-axis.

In this way, the domain of integration is divided
into three sub-regions I, I, 111 to each of which
corresponds a double integral.

Thus, we get

a 2ax —-Ja?-y?
dydx = dyd
ijmf(x,y) ydx ﬁﬁz/m f(x, y) dydx
Part |

f (%, y)dydx +f£:/2a f(x,y) dydx

Part 11

a
+
I: a+Ja?-y?
Part 11

Example 17: Find the area bounded by the lines y
=sin x, y =cos x and x = 0.

Solution: See Fig 5.22.

Clearly the desired area is the doted portion
where along the strip PQ, P lies on the curve
y =sinx and Q lies on the curve y = cos x and finally

the strip slides between the ordinates x = 0 and
x=1
4

J2ax
f(
2ax-x?
Y
y=2a
peoax L3
Var: el
o “-l_ .' -|.‘
NSl a
- I_;_ = _-:n:l _______ y=a
P Q Pp" ‘Q”
a0 =0
- (a,0) y X
(0,0)
©
~
I
>
(x-a°+y=a N
Fig. 5.21
2m X

Yy =cosx

Fig. 5.22
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T

O ”dxdy J'Hojsxdygdx

nx
L1
4

= [ (cosx —sinx)dx
0

= (sinx + cosx)g'/4

_01 0,01 .0
2 ﬁf H
(2
ASSIGNMENT 2
1. Change the order of integration II 2 +y > dxdy

2. Change the order integration in the integral I I f (xy)dxdy

aldosa

3. Change the order of integration in J' J' (x, »)dy dx
xtanQ

4. Change the order of integration in LI f(x, y)dxdy

[PTU, 2008]

5.4 EVALUATION OF DOUBLE INTEGRAL IN POLAR COORDINATES

0= r=4(8)
To evaluate [ [ f(r,0) dr de, we first integrate with respect to r between the limits
0=a r=q@®)
r= @) to r = Y(B) keeping O as a constant and then the . r=w@)
resulting expression is integrated with respect to 6 from 6 = 16=5 W
ato 6= D
Geometrical IHlustration: Let AB and CD be the two "= ®e) 0
continuous curves r = @@0) and r = W(0) bounded between EX <>
the lines 6 = a and 6 = 3 so that ABDC is the required - > e
region of integration. P P\~
Let PQ be a radial strip of angular thickness &0 when OP A
makes an angle 6 with the initial line. 5-°
= . . . 8 =0 .
Here j:::é?)f(r,e)dr refers to the integration with 5 >
Fig. 5.23

respect to r along the radial strip PQ and then integration
with respect to 8 means rotation of this strip PQ from AC to CD.
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Example 18: Evaluate [[rsinBdrd6 over the cardiod r = a (1 - cos8) above the initial line.

Solution: The region of integration under consideration is the cardiod r = a(1 — cos 0) above
the initial line.

In the cardiod r=a(l-cosB);, for =0, r=00

T O
6==, r=a,

5 0
6=m r=2ap

As clear from the geometry along the radial strip OP, r (as a function of 0) varies from
r=0tor=a(l - cosB) and then this strip slides from 8 = 0 to 6 = Tt for covering the area above
the initial line.

Hence 6= 12

i |j=a(1—cose)

I:%E { rdrEsinede

T[|:|r2 a(1-cos8)[]
=[Gs [sin6do

0021 0

2

_ o
_ & {1 -cos6) 0. B fn (x) £ (x)dx
2g 8 /'O

=2 f1-cosmf - (1-cos0)= L [s-0] = =

3
Example 19: Show that IIrzsianr de = 2%, where R is the semi circle r = 2acos8 above
R

the initial line. e=ln12
Solution: The region R of integration is the semi-circle _
e . r=2acosb
r = 2acos above the initial line. N
For thecircle r=2ac0s6,6=0 0O r=2a0 ’
% D iihi =0
0 :g 0 r=00 ©0.0) %) (22,0)
Otherwise also, r=2acos® [ r2=2arcosO
X% + y2 = 2ax _
(X°—2ax + a?) +y? = a2 Fi9- 525
(x=a)? + (y - 0) = &
www.Jntufastupdates.com
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i.e., it is the circle with centre (a, 0) and radius r = a

g 2acos®
Hence the desired area [ rsin6drdo
00

g[gacose 5
= d 6d6
{E | r rasm
2 r3 2acose[]
:J(; ﬂ? Hsinede
)
-1 V2 3 i
:? (2a)’ cos® BsinBdd
n+1
__8 3[ib 4 e n f
< OZ %0 usingJ'f(x) f'(x)dx:£
3
rdrdé

Example 20: Evaluate II over one loop of the lemniscate r2 = a2cos26.

/a2 +r2

[KUK, 2000; MDU, 2006]
Solution: The lemniscate is bounded for r =0 implying 6 = i%[ and maximum value of r is a.
See Fig. 5.26, in one complete loop, r varies from 0 to I =aJ/cos28 and the radial strip

slides between 9:—%[ to n

4
Hence the desired area

€0s26

/4 a
A = IH/J e r) ———rdrdg
Loy e oo
acosze
I a +r
w4

de
n/4

J'ng a’ +a? cosZG —agle

/4
= I (\/2 cosf — 1)d6
-1/4
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J' J—cose 1)d6

gf5|ne G E

_2aH/§1 E T[D

Example 21: Evaluate ”r3dr de, over the area included between the circles r = 2acos8 and
r=2bcosé (b < a). [KUK, 2004]

Solution: Given r = 2acos® or r?> = 2arcosf
X% + y? = 2ax
(x+ay+(y-07?=4a
i.e this curve represents the circle with centre (a, 0) and radius a.

Likewise, r = 2bcosB represents the circle with centre (b, 0) and radius b.
We need to calculate the area bounded between the two circles, where over the radial

_ _ _ , , T, T
strip PQ, r varies from circle r = 2bcosf to r = 2acos@ and finally 8 varies from 5 3

L

2acos® n
Thus, the given integral ”r3drd9 j [ ridrde == r=2bcos
_Tt 2bcos6®
2 W\ TN Q
2 [y |ﬁacose . ', >
J- "/ZH_%bcose
0
4J' %Zacose (2bcosB)* L6 (0, 0)
L
2
=4(a4 —b4) ] cos*0de r=2acosf
‘n
2 Fig 5. 27
m
2

8(«314 - b4)j cos*0do

3[1
=8 -0 55
=g (a“—b“).

Particular Case: When r = 2cos6 and r=4cos@i.e,a=2and b =1, then
3 45 .
1== -b* 24 —14) = = units
3 nfat 1) = (2t -1¢) = XM units
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ASSIGNMENT 3
1. Evaluate [[rsinBdrd® over the area of the caridod r = a(1 + cos6) above the initial line.

a(1+cosB)

E—llnt I —IJ' rsinedrdeﬁ

2. Evaluate ”r3drd9 , over the area included between the circles r = 2acos0 and r = 2b cos@

(b > a). [Madras, 2006]
u T[ —2bcose O
%Imt I'= I 5 Zacoser d’EdeD (See Fig. 5.27 with a and b interchanged)
O
3. Find by double integration, the area lying inside the cardiod r = a(1 + cosB) and outside
the parabola r(1 + cos®) = a. [NIT Kurukshetra, 2008]

w2 a(l+cos0) 0 O

ﬂ—llnt 2J' @[ rdr%deD
a

H 1+cos6 H

5.5 CHANGE OF ORDER OF INTERGRATION IN DOUBLE INTEGRAL IN POLAR
COORDINATES

In the integral j:;gj:;:;é?) f(r.8)drde , interation is first performed with respect to r along a
‘radial strip’ and then this trip slides between two values of 6= o to 6 = f3.

In the changed order, integration is first performed with respect to 6 (as a function of r
along a ‘circular arc’) keeping r constant and then integrate the resulting integral with respect
to r between two values r = ato r = b (say)

Mathematically expressed as

j:qj f(r,0)drde=1= f f: (r,8)dedr

Example 22: Change the order of integration in the integral [ [>*°® f(r,0)dr d@

Solution: Here, integration is first performed with
respect to r (as a function of 0) along a radial strip I
OP (say) from r =0 to r = 2acos 0 and finally this

r=2acosdor 8=cos 1
2a

2" R

Curve r=2acos® O r?=2arcos@ .
0 X2+y?=2ax 0 (x—a)+y?=a ©.0)
i.e., it is circle with centre (a, 0) and radius a.

On changing the order of integration, we have to
first integrate with respect to 0 (as a function of r) along

radial strip slides between 6 =0to 6=
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Multiple Integrals and their Applications 377

ar
the ‘circular strip’ QR (say) with pt. Q on the curve 8 = 0 and pt. R on the curve 6 = cos 12_a

and finally r varies from 0 to 2a.

ar
2acos 2a Cbos O

%[ 2a
O I=[ [ f(r6)drdo= @ If(r,e)degdr
0 ©0 0 0
A A A ae%[ 2
Example 23: Sketch the region of integration J' J' .
a 2Iog5

f(r,e)rdr de and change the order
of integration.

) ae4 /2 r=p 8=y
Solution: poyple integral |, J;  F(r.8)rdrdd i igentical to [ [ f(r,®)rdrdd, whence

log—
ga r=a  B8=fy(r)

integration is first performed with respect to 0 as a function of r i.e., 6 = f(r) along the

r
‘circular strip’ PQ (say) with point P on the curve 8= 2|095 and point Q on the curVe

T .
0= 5 and finally this strip slides between between r = a to r = ae™* (See Fig. 5.29).

The curve 6= 2IogL implies 9 IogL
a 2 a

r
2 —
2="" or r=ae?

Now on changing the order, the integration is first performed with respect to r as a
function of 0 viz. r = f(6) along the ‘radial strip’ PQ (say) and finally this strip slides between

=0t 8 =g- (Fig. 5.30).

0 =12
E C(ae™, m2)
QF \ /-6 =2log rla SIS 1= ae’?
— L] \ ,=°aree/2 (a W2) B &
r=ae™
r=a .
o
- 0=0 5 r=a
(@]
Fig. 5.29 Fig. 5.30
/2 [ r=ae®? 0
O I:J‘ g’ f (r,0)rdrdo
0=0 r=a H
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5.6. AREA ENCLOSED BY PLANE CURVES

1. Cartesian Coordinates: Consider the area bounded

by the two continuous curves
y = @Xx) and y = W(x) and the two ordinates x = a, x =
b (Fig. 5.31).

Now divide this area into vertical strips each of
width ox.

Let R(x, y) and S(x + dx, y + dy) be the two
neigbouring points, then the area of the elementary
shaded portion (i.e., small rectangle) = dxdy

But all the such small rectangles on this strip PQ
are of the same width &x and y changes as a function
of x from y = @(x) to y = W(x)

0,0

Fig. 5.31

W(x) X
00 The area of the strip PQ = 5Lto > oxdy = 6X6Lt0 % dy = 6xj:(J£))dy
y — Y =0 ofx)

Now on adding such strips from x = a, we Y
get the desired area ABCD,

e W (2 y=b
[, d dx[. d dxd
2 OG0y =gy = [ axay
Likewise taking horizontal strip P’Q’ (say) y=a
as shown, the area ABCD is given by

y=b x= llJ

Jy=a J=dty) y axdy 5

Polar Coordinates: Let R be the region
enclosed by a polar curve with P(r, 6) and Q(r +
or, 8 + d8) as two neighbouring points in it.

Let PP’QQ’ be the circular area with radii OP
and OQ equal to r and r + &r respectively.

Here the area of the curvilinear rectangle is
approximately

= PP’ PQ = 0r-rsin 8 = or [d6 = r dr &6.

If the whole region R is divided into such small
curvilinear rectangles then the limit of the sum
>rord0 taken over R is the area A enclosed by the
curve.
ie., A—gé_}%Zrérée—j{rdrde

Fig. 5.32

Fig. 5.33

Example 24: Find by double integration, the area lying between the curves y = 2 — x? and

y =X

Solution: The given curve y = 2 — x? is a parabola.
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y =00
=10
y=1g I
y=-20 / At
y=10 // 3
y= _25 AL, 1)
i.e., it passes through points (0, 2), (1, 1), (2, — 2), \
-1, 1), (-2 -2). \
Likewise, the curve y = x is a straight line c % \
y=0 0O x=0 H
y=1 0 x=1 | P
y=-20 x=-2§ )/

i.e., it passes through (0, 0), (1, 1), (- 2, - 2) /

where in =-1

I o R |

where

Now for the two curvesy = x and y = 2 - x? to
intersect, x =2 - x2 or X2+ x-2=0.e., y=-2
x = 1, =2 which in turn implies y = 1, -2 D-2,-2)
respectively.

Thus, the two curves intersect at (1, 1) and Fig. 5.34
(-2, -2),
Clearly, the area need to be required is ABCDA.

—-x2 1

0 A=_j12Ej ddex=j(2—x2—x)dx

X -2

x3_x2ﬂ _9

= @2X == -= == units.
% 3 28, 2

Example 25: Find by double integration, the area lying between the parabola y = 4x — x?

and the line y = x. [KUK, 2001]
Y
Solution: For the given curve y = 4x — X3,
x=00 y=00 St
x=10 ;)//:2D N
x=2 0 y=4f w2
- - C3,3
x=30 y=30 A S
x=4 0 y=0H 8
i.e. it passes through the points (0, 0), (1, 2), (3, 3) and ,
4, 0). o
Likewise, the curve y = x passes through (0, 0) and @9 (4,0
(3, 3), and hence, (0, 0) and (3, 3) are the common points. o X=3
Otherwise also putting y = x into y = 4x — x?, we get x=0 _
X=4x-x20 x=0, 3. Fig. 5.35
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See Fig. 5.35, OABCO is the area bounded by the two curves y = x and y = 4x — x?

3 4x-x?

O Area  OABCO=[ [ dydx
0 x

3 X —x2
=£@/é dx
2 3
=J' (4x - X —x)dx = X——X—ﬁ == units
o 2 3FH 2
. 3
Example 26: Calculate the area of the region bounded by the curves Y = 2 12 and 4 y = x2

[INTU, 2005]

Solution: The curve 4y = x? is a parabola

where y=00 x=0, 2. .
hrough (-2, 1 2 1).
y=10 X:izgle,ltpassest rough (=2, 1), (0, 0), (2, 1)
Likewise, for the curve Yy = 3
’ X2 +2
y=0 0O x=0 O

O
y=1 0 x=1210

0
x=-1 0 y=-10
Hence it passes through points (0, 0), (1, 1), (2, 1), (-1, -1).
Also for the curve (x* + 2) y = 3x, y = 0 (i.e. X-axis) is an asymptote.

For the points of intersection of the two curves Yy = x23i > and 4y = x°
3x X2
i - = 2 (2 -
we write 2+ 4 Or X (xc+2) =12x
Then x=0 0O y=0

x=2 0O y=1
i.,e. (0, 0) and (2, 1) are the two points of intersection.

Y
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outside the cardiod r = a(1 — cos8).
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The area under consideration,

O 3x x20

rEJ'_ X +2 ddeX W Hj

=g(I096—I092)—§ =log32 -

381

Example 27: Find by the double integration, the area lying inside the circle r = asin@ and

[KUK 2005; NIT Kurukshetra 2007]

Soluton: The area enclosed inside the circle r = asin@ and the cardiod r = a(1 — cos@) is shown
as doted one.

For the radial strip PQ, r varies from r = a(1 — cos@) to r = asin® and finally 0 varies in

T
between 0to —-

2
For the circle r = asin®
6=00 r=00
H|
G:ED r=ag
2 0
=m0 r=0q 0=

0=m/2

/r= asind

Likewise for the cardiod r = a(1 — cos6);
6=00 r=0[
O
p="' r=a(
2 O
6=mn0 r=2ap

. T
Thus, the two curves intersect at 6 =0 and 6= E.

n
2 asin®

A:J' J’ rdrd®

0 a(l-cosB)

asin®
/2 r2

[

_ (7’1 inZG—(1+cosze—ZCOSG) 6
=[" 3B H

do
a(1-cos6)

Fig. 5.37

«—r=a(l-cosb)

2 /2
:%J' [-c0s26 -1+ 2cosB]dB, since (sin?6-cos?6) = -cos20
0
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|jl/2

a’ [-sin 20 . nQJ

=— -8+2sinby =a’l-—1

2H 2 = 40
Example 28: Calculate the area included between the curve r = a(sec@ + cos8) and its
asymptote r = asec®. [NIT Kurukshetra, 2007]

1
Solution: As the given crave r = a(secf + cosf) i.e., ' = a@ﬁ + COSGE contains cosine terms

only and hence it is symmetrical about the initial axis.
Further, for 8 =0, r = 2a and, r goes on decreasing above and below the initial axis as 0

LS T
approaches to - and at 8 = r=o
Clearly, the required area is the doted region in which r varies along the radial strip from

LS
r = asecO to r = a(sech + cos@) and finally strip slides between 6= ) to 6= o

LY Y
2 a(secB+cosB)

O A= 2] ] rdrdo

asec6

V2 [}2 sece+cose)

=Y gp
2 e[:f O 6
-af " peeeseg B e

= azj;n/ (0052 0+ 2)d6

r=a(sec6 + cosb)

0

o 2(5 +c0s20) de
I
Fig. 5.38

=£§S9 sin20 (12 _ 5ma?
2 2 H 4"

ASSIGNMENT 4
1. Show by double integration, the area bounded between the parabola y? = 4ax and x? =

16
4ay is ?az- [MDU, 2003; NIT Kurukshetra, 2010]
2. Using double integration, find the area enclosed by the curves, y> = x3 and y = x.
[PTU, 2005]

Example 29: Find by double integration, the area of laminiscate r?> = a?co0s26.
[Madras, 2000]

Solution: As the given curve r? = a?cos20 contains cosine terms only and hence it is
symmetrical about the initial axis.
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Further the curve lies wholly inside the circle r = a,

since the maximum value of |cos 8] is 1.
Also, no portion of the curve lies between

0= n to 0= 3%[ and the extended axis.

4 .
See the geometry, for one loop, the curve 1S 0=0
bounded between 8=-" to T
4 4
L1
4 r=Ja’cos28
0 Area=2[ [  rdrd®
oo Fig. 5.39
/4 .o [3/C0s26
= 4J' r de
0o 2]

sin 207 _

H2 H

a2

/4
= 2a2I c0s20d6 = 2a2
0

5.7 CHANGE OF VARIABLE IN DOUBLE INTEGRAL

The concept of change of variable had evolved to facilitate the evaluation of some typical
integrals.

Case 1. General change from one set of variable (x, y) to another set of variables (u, v).
If it is desirable to change the variables in double integral [ff(xy)dA by making
R
X =@u, v)and y = P(u, v), the expression dA (the elementary area dxdy in R,)) in terms of u
and v is given by

dA =

X,y X,y
JEU—VadUdV, Jmai 0

J is the Jacobian (transformation coefficient) or functional determinant.

0 JR'jf (x,y)dxdy = ] ﬂ(u,v)JEﬁ:—\{Edudv

Case 2: From Cartesian to Polar Coordinates: In transforming to polar coordinates by means
of x =rcos@ and y = rsin®,

ax ox
JElx,yD_ dr 9el|_| cosB sin6
HreB™ |9y 0dy| |-rsin® rcos6
or 06
O dA=rdrde and [[f(xy)dxdy= fA(r.6)rdrde
R R
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2
Example 30: Evaluate .F[ (x+y)dxdy \where R is the parallelogram in the xy plane with
vertices (1, 0), (3, 1), (2, 2), (0, 1) using the transformation u = x + vy, v= X - 2y.
[KUK, 2000]

Solution: R, is the region bounded by the parallelogram ABCD in the xy plane which on
transformation becomes R, i.e., the region bounded by the rectangle PQRS, as shown in the
Figs. 5.40 and 5.41 respectively.

v
Y
P(1,1) Q@4 1)
U
> B(3,1
(I ool I
1 !
N 3 1S
o A(1,0) X S
S(@1,-2) R(4,-2)
Fig. 5.40 Fig. 5.41
) u=x+y u=1+0=1| .
With v=x-2y" A (1, 0) transforms to v=1-0=1[ "€ P(1, 1)

B(3, 1) transforms to Q(4, 1)
C(2, 2) transforms to R(4, — 2)
D(0, 1) transforms to S(1, — 2)

ax ox

Ja(x,y) - Ju ov - _1
and o(uv) |9y 9y| 3
ou ov

1
Hence the given integral '!qugdudv

:Jjﬁz%UZdudv = %Jf[v]l_z u2du

1 4
:§><(1+2)j1 u?du

s

3140
u :@:21units
3,H 3
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Example 31: Using transformation x + y = u, y = uv, show that
1-x y
ﬂl By = 3(e-1). [PTU, 2003]
0

Solution: Clearly y = f(x) represents curvesy =0and y = 1 — x, and x which is an independent
variable changes from x = 0 to x = 1. Thus, the area OABO bounded y
between the two curves y = 0 and x + y = 1 and the two ordinates 1
x =0and x =1 is shown in Fig. 5.42.
On using transformation,
x+y=u 0O Xx=u(l-v)
y = uv 0 y=uv

x=1

Now point O(0, 0) implies 0= u(1 - v) ..(1) SN
and 0=uv .2 o P A
; - — (0,0 (1, 0)
From (2), either u =0 or v = 0 or both zero. From (1), we get v |
u= O, v=1 Flg 5.42
Hence (%, y) = (0, 0) transforms to (u, v) = (0, 0), (0, 1)
Point A(1, 0), implies 1 = u(1 - v) ..(3)
and 0=uv ..(4)

From (4) either u =0 or v =0, If v = 0 then from (3) we have u = 1, again if u = 0, equation
(3) is inconsistent.

Hence, A(1, 0) transforms to (1, 0), i.e. itself.

From Point B(0, 1), we get 0 = u(1-v) ...(5)
and 1=wvu (6 oL & BLY
From (5), either u=0orv=1 e
If u =0, equation (6) becomes inconsistent.
If v =1, the equation (6) gives u = 1.

Hence (0, 1) transform to (1, 1). See Fig. 5.43. o TP laao
Hence

-X DZ = a(xly)
J’lj'l e yEdxdy =J’1J’1ue"dudv where J= =u
o Jo o Jo a(u,v)

:'r:u%r:e"dvadu :'rolu e —1)du=(e —1)%2

43 y y2 —y\2 } .
Example 32: Evaluate the integral J'J V2 ;Tzz dxdy by transforming to polar coordinates.
Za

Fig. 5.43

1
1

==(e-1

=3
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2 Y +
Solution: Here the curves X:Z_a or y? = 4ax is Y
parabola passing through (0, 0), (4a, 4a).
Likewise the curve x = y is a straight line passing
through points (0, 0) (4a, 4a).

Hence the two curves intersect at (0, 0), (4a, 4a).

0 =12
<o
I
IS
Q

In the given form of the integral, x changes (as a (0’8 51‘3’ 0)

2

function of y) from X = Z_a to x = y and finally y as an

independent variable varies from y =0to y = 4a.
For transformation to polar coordinates, we take Fig. 5.44
a(x,y)
Xx=rcosh, y=rsinfand J=——+=r
Y 3(r.0)
The parabola y? = 4ax implies r?sin0 = 4arcos0 so that r(as a function of 8) varies from

r=0to r:—A'Z’I_C(ZSe n n

and 0O varies from 6 = 4 to 6= 5

Therefore, on transformation the integral becomes

w2 r=43¢90 12 (00529 —sin? @
E snve ) craras
4 Jo r?

4acos0

/2 2 T2
=I c0s26 %Dsm ® de
w4 2 %

/2 2 2
:J' (1—25in26)—16a cos 9 4
w4 2 sin*@

w2 (1-2sin?@)(1-sin?6) 00

= 8a? —
wa sin* 0
2 [ - 3sin?0 + 2sin* 6
=8a? do
w4 sin*o

174
= 8&12-[11/42 @osecze(l + cot? 6) — 3cosec?0 + 26

w2
= 8a2I Feot?0 cosec?® — 2cosec’d + 20
/4
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w2 )
= 8a? é’ cot? Bcosec?0d6 + 2(cot e) +(20)20
/4 =

Let cot B = t so that — cosec? 6 d6 = dt. Limitsfor © :E,t = 1%
4 g
e="t=00
2 O
3P 0
=8 a'—tzduzo 1)+ M=gag-L| -2+ 75
2 X 28
DZ 30

e (

Example 33: Evaluate the integral _[j‘ a X2 + y2) dxdy by changing to polar coordinates.

Solution: The above integral has already been discussed under change of order of integration
in cartesian co-ordinate system, Example 7.

For transforming any point P(x, y) of cartesian coordinate to polar coordinates P(r, 6), we

take X = r cos6, y = r sin® dJ=a(X'y)=r-
dKe X =T C0Su, y =TI SIno an a(r,e)

The parabola y?> == |mplies rzsinze:M ie., r%sinze—@azo
a a

a
O either r=0 or r= C(_)Se
asinZo
L _X
Limits, for the curve Y Y
BA 1 1A(a 1)
p=tantY = tan1 22 = tan"t 2
X OB a
d for th y=> .
and for the curve a 5(a0)
0= tan—lg = I
a 2
. ) coso [
Here r (as a function of 6) varies from 0 to

asin?6 _
1 T Fig. 5.45
and 8 changes from tan‘lg to —.
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Therefore, the integral,

a./x/a
[ (+y)
0 x/a
/2 O @cosze @
transforms to. 'Z.ﬁanﬂ%@ R 3dr%de

Ecose
J’ J’ sin? Edrde
cot(a)JO

_1¢”? _cos*s
4 Joota a4(sin4 9)2
T,
1 2
0 I =—= [ cot*8(1+cot?8)cosec’8d8
4a cot?a
Let cot O = t so that cosec?8 df = dt (- 1) and 8 =cot*al t=a{
T 0
0=— Ot=0
2 B
1 0
=—[t*(1+t?)(-dt
O 17 { 1+ 2)(-dt)

1 Paepmget 3 Y0
= a“J:g +1t @t—4a4H§+7%

Oa , a0

'=By0 *28E

n
Example 34: Evaluate [ xy(x? +y?)2dxdy over the positive quadrant of x2 + y? = 4,
supposing n + 3> 0. [SVTU, 2007]

Solution: The double integral is to be evaluated over the area enclosed by the positive
quadrant of the circle x> + y? = 4, whose centre is (0, 0) and radius 2.

Let x = rcos6, y = rsing, so that x? + y> = r2. v
i i s
Therefore on transformation to polar co-ordinates, 0=2 /Cirde r=2

0=1/2 r=2 » P
I :J;):O L:O rcos@rsin® r"|J|drde, X

1
-
O

w2 2 . ) 0 _ a(x y)
:J(') J(')(r” 3dr)smecosede, EJ = a(r.6
Tr/2|:|rn+4

J' Hﬁ—%smecosede Fig. 5.46

www.Jntufastupdates.com



Multiple Integrals and their Applications 389

L

n+4 2
= }sinecosede
_on+4 sinzo[”? ) i _ f2(x)
_(n+4) E.]TO ) usmgjf(X)f(X)dX— 2
2n+3
:(n+4),(n+3)>0.

ma

Example 35: Transform to cartesian coordinates and hence evaluate the [[r°sin@cos8drde
00

[NIT Kurukshetra, 2007]

Solution: Clearly the region of integration is the area enclosed by the circle r =0, r = a
between 6=0to 6 =1

T _a
Here I :J;J;r%inecosedrde

T _a
:J'J'rsineﬁrcoseﬁrdrde Cirder=a
0 JO

On using transformation x = r cos®, y = rsiné,
a _y=JE&-

I :J'_aj; xy dxdy
g K ANTEE
:J-l%grmxdx Fig. 5.47

0

:%}x(az - xz)dx
—a

As x and x3 both are odd functions, therefore net value on integration of the above integral
is zero.

(azx - x3)dx = 0.

—_—

- :1
1.e. | 2

a

ASSIGNMENTS 5
Evaluate the following integrals by changing to polar coordinates:

(1) Laﬁ)w(xz+yz)dxdy (2) J:Laﬁdxdy
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a Ja?-x? x .
@) J dxdy (4) ”e )dx dy [MDU, 2001]
—-a-— az XZ

5.8 TRIPLE INTEGRAL (PHYSICAL SIGNIFICANCE)

The triple integral is defined in a manner entirely analogous to the definition of the double
integral.

Let F(x, y, z) be a function of three independent variables X, y, z defined at every point in

a region of space V bounded by the surface S. Divided V into n elementary volumes &V, 8V,,

., OV, and let (x,, y,, z,) be any point inside the rth sub division &V,. Then, the limit of the

sum
z

Z F(Xr yrvzr)6 Vi, (1) Z= 6% ) ™

if exists, as n - « and 8V, - 0 is called the
‘triple integral’ of R(X, y, z) over the region V, and
is denoted by

I”F(x,y,z)dv ..(2)

In order to express triple integral in the
‘integrated’ form, V is considered to be sub-
divided by planes parallel to the three coordinate
planes. The volume V may then be considered as o
the sum of a number of vertical columns extending
from the lower surface say, z = f,(X, y) to the upper
surface say, z = f,(X, y) with base as the elementary
areas 0A, over a region R in the xy-plance when all
the columns in V are taken.

On summing up the elementary cuboids in the
same vertical columns first and then taking the sum
for all the columns in V, it becomes

ZﬁF(XUyﬂL)&ﬁA .3

with the pt. (X, Y,, z,) in the rth cuboid over the element dA,.
When 8A, and 0z tend to zero, we can write (3) as

‘[52 By F(x.y.z dzEdA

Note: An ellipsoid, a rectangular parallelopiped and a tetrahedron are regular three dimensional regions.

5.9. EVALUATION OF TRIPLE INTEGRALS

For evaluation purpose, I\J;IF(X'Y'Z)dV ..(1)

is expressed as the repeated integral
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j:f yyszzf F(x,y, z)dzdydx ..(2)
where in the order of integration depends upon the limits.

If the limits z; and z, be the functions of (X, y); y, and y, be the functions of x and x;, x, be
constant, then

x=b [Y=ay(x) B=fz(XvV)F( )d Dd Dd
| = 0 XY, z)azdyHax ..(3
xla@q{(x) Elz:flj(x,y) 0 E ©

which shows that the first F(X, y, z) is integrated with respect to z keeping x and y constant
between the limits z = f;(x, y) to z = f,(X, y). The resultant which is a function of x, y is
integrated with respect to y keeping x constant between the limits y = f,(x) to y = f,(X).
Finally, the integrand is evaluated with respect to x between the limits x = ato x = b.

Note: This order can accordingly be changed depending upon the comfort of integration.

axxty

Example 36: Evaluate | e*"7**dzdydx. [KUK, 2000, 2009]
00 0

Solution: On integrating first with respect to z, keeping x and y constants, we get

I -J'J' EX"V a dydx, [Here (x +y) = a, (say), like some constant]
:J(,)aj(.)x %(X+y)+(x+y) _ e(x+y)+0 %jde

:J:J: EZ(XW) _ e(x+y)Bjde

a Eé2X+2y ex+y |j
I 1 %dx, (Integrating with respect to y, keeping x constant)

a 4x 2X 2X
[ T T
1 1
On integrating with respect to x,
_B e e e
Hs 2 4 1H
[ g R [ % 1 1
= e -———-=+1
He 2 4 '8 2 4 E
_® 3 5 .30
. “Hg 48 ¥ TgH
aZ_rZ

/ asgin®
Example 37: Evaluate I " f J e drdBdz. [VTU, 2007 NIT Kurukshetra, 2007, 2010]
0 0
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Solution: On integrating with respect to z first keeping r and 6 constants, we get

w2 asing &1

|:J’OJ’0 (z),2 rdrde

/2 asme

——I J' (a2 - r?)rdrde

1 ”/2D r2 r "

aJo

:1.["/2[%12 [@°sin?0 a“sm“GD
a

0 H 2

m
a2 2 4
=—[[2sin*6 —-sin® 66
49

:a_%[.&j_[ 30 g0
48 2 2 42 E

w2 . _(P-Dp-3)...
.L sin? xdx = -2 DZ

a3 Ot 3 5mad
. BB b o

! e*
Example 38: Evaluate ﬂ‘ Igy . logzdzdydx.

e Jdogy & 0
Solution: J;J; H[; Iogzdzadxdy

[Here z = f(x, y) with z, =1 and z, = ex* ¥

:ijiogyﬁ[fx logz EL%}IZ dxdy

Ist lind
fun.  fun.

= Iogygogzxz J'z dzéT

r %ex loge* —1Dogl

only if piseven

Ede

t
u

dxdy

Eblx dy

www.Jntufastupdates.com
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[ B - e DRy
J’e J’"’gy {x - 1)e" + 1) dy
:Il Be* - 2¢* + x5 dy
=fgy+1)uogy+2(1—y)gjy

| Il
function  function

On integrating by parts,
0 2 € 2 e
_ Ly 1@ O y
| = ogy x ya = +yrdy + y——aD
] Ho X Iy > Y % A
=§Ioge)é§+e§—logl[%+l —J'%+1de+ ) 2- 1)5
%; _Dy2 ae —a? —
+e +2e—¢ 1D
HZ E_ L H

2
= +e—e——e+1+1+2e—e2—lD
H 4 4 5

1 A\
= =—(1+8e -3¢
n )5
A X+Z
Example 39: Evaluate I II X +y +z)dxdydz [INTU, 2000; Cochin, 2005]

Solution: Integrating first with respect to y, keeping x and z constant,
I :‘r_lj;z Eﬁ(y + y; + yzgiigdxdz
=ﬁ1§ﬁ(4zx + 222)dx§dz
J' gl 2+ 23 [X dz

= ZDZ—+222QD2
I—l@ 2 ﬁd

41
= ‘rz3dz:4z— =0
-1 4

-1
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ASSIGNMENT 6
Evaluate the following integrals:

(1) ﬁﬁzfxz)/zdxdydz (2) J'_aafbji(xz +y2 + Zz)dXdde [VTU, 2000]

log2 _x x+

4 27 Jaz-X logy
X+y+Z
) Ioﬁ IO dydxdz (4) L LL eV*2dzdydx  [NIT Kurukshetra, 2008]

5.10 VOLUME AS A DOUBLE INTEGRAL

(Geometrical Interpretation of the Double Integral)
One of the most obvious use of double integral is the determination of volume of solids
viz. ‘volume between two surfaces’.

If f(x, y) is a continuous and single valued function £
defined over the region R in the xy-plane with z = f(x, y) /"\
as the equation of the surface. Let [* be the closed curve S c
which encloses R. Clearly, the surface R (viz. z = f(x, y)) \4—7/
is the orthogonal projection of S(viz z = F(x, y)) in the N
xy-plane.

Divided R into elementary rectangles of area oxoy
by drawing lines parallel to the axis of x and y. On each
of these rectangles errect prisms having their lengths
parallel to the z-axis. The volume of each such prism is o 4
Z0X 0y.

(Division of R is performed with the lines x = x; (i = 1, ﬂ }:/[/./r,
2, .., mand y=y(j=12 .., n). Through each line rﬁj/%?z{”‘/:’}

. RV AYs

X = X;, pass a plane parallel to yz-plane, and through {43R, yr M1 4
each line y = y;, pass a plance parallel to xz-plane. The _
rectangle AR; whose area is AA; = Ax; Ay; will be the Fig. 5.49

base of a rectangle prism of height f(x, h;), whose
volume is approximately equal to the volume between the surface and the xy-plane x = x; — 1,

n
X=X,;y=Yy;-1y=y; Then > f (Eij,nij)AXi [Ay; gives an approximate value for volume V of
=
the prism of the cylinder enclosed between z = f(x, y) and the xy-plane.
The volume V is the limit of the sum of each elementary volume z dxdy.

D = = =
\Y gXL}gZ > z20x 0y yzdx dy y f (x, y)dA
Yy —

Note: In cyllidrical co-ordinates, the equation of the surface becomes z = f(r, ), elementary area dA = r dr d0

and volume = [ f(r,8)rdrd®
R
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Problems on Volume of a Solid with the Help of Double Integral

Example 40: Find the volume of the tetrahedron bounded by the plane %+ 2 +Z=1 and

b ¢
the co-ordinate planes. [Burdwan, 2003]
. . X,Y . z X yQd
- —+=+==1 0 z=f(xy)=cg-=-=
Solution: Given, a b o ( Y) % a ba ..(1)

If f(x, y) is a continuous and single valued function over the region R (see Fig. 5. 50) in the
xy plane, then z = f(x, y) is the equation of the surface. Let C be the closed curve that is the
boundary of R. Using R as a base, construct a cylinder having elements parallel to the z-axis.

This cylinder intersects z = f(x, y) in a curve [, whose projection on the xy-plane is C.

Z Z=C(1- xla-ylb) = f(x, y)

b c
Fig. 5.50 Fig. 5.51
The equation of the surface under which the region whose volume is required, may be
. . . X _yQ
written in the form (1) i.e., z :cal—— -=
@) 2 pE

Hence the volume of the region :-”'adA :J'J'c %1 —% —%%dx dy
R R

The equation of the inter-section of the given surface with xy-plane is
If the prisms are summed first in the y-direction they will be summed from y = 0 to the line

yff-23

a bH-X
Therefore, \% =J'OJ':§ agc@—i—%adydx

a
b(1-x/a)

(e _xy_y
_.[)Q/ a 2ba ax

0
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J' = + X—ZDdx

—cb X2 X3|j
5 " 2a  6aH

—bcul a2+ a® O abe
B 22 6aH 6

Example 41: Prove that the volume enclosed between the cylinders x? + y? = 2ax and

12842 '

9 _ .
zc=2ax1s 15

Solution: Let V be required volume which is enclosed by the cylinder x? + y? = 2ax and the
paraboloid z? = 2ax.

Only half of the volume is shown in Fig 5.52. z
Now, it is evident from that z = ./2ax is to be evaluated
over the circle x? + y? = 2ax(with centre at (a, 0) and radius  Z%=2ax
a.
Here y varies from -./2ax-x? to +/2ax —x? on the
circle x? + y? = 2ax and finally x varies from x =0 to x = 2a 22.0)
a
0,0 ’
Vo2 a ax—x2 dxd . ©.0) (a, 0)
0 —ﬁﬁm[z]xyasz—(x,y) 4
o O X2+ P = 2ax
r q' J2ax Edydx
Fig. 5.52

a NJ2ax-x2 [
= Jj J2ax a’o dyadx
= ﬁa v2ax |Y|ozax_x2 dx = ﬁax/Zax\/Zax - x2dx

= 4\/2arax\/2a - x dx
0

Let x = 2asin?@, so that dx = 4asin® cosd d6. Further, for x=0,0=0 0O
O

o

X=2a,0=—
25
O V = 4\/_-[ 2asin?0+/2acosO asinBcosOdo

1T
= 64a3ﬁ/zsin3ecoszed9
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P G 1)((pp+—q’o)’)(-p-- qu'_ll)(f*_f 31 pes ge2
(3-1)1 _1282°

=64a° =
508 15

Problems based on Volume as a Double Integral in Cylindrical Coordinates

Example 42: Find the volume bounded by the cylinder x? + y?> = 4 and the hyperboloid
X2+y?-72=1,

Solution: In cartesian co-ordinates, the section of the given hyperboloid x? + y?> — z> = 1 in
the xy plane (z = 0) is the circle x* + y? = 1, where as at the top and at the bottom end (along
the z-axis i.e, z = +./3) it shares common boundary with the circle x? + y? = 4 (Fig. 5.53 and
5.54).

Here we need to calculate the volume bounded by the two bodies (i.e., the volume of
shaded portion of the geometry).

\—7
N\ | 7

%

42X

[
KM

Z;

Z
S

e
H S

Fig. 5.53 Fig. 5.54

(Best example of this geometry is a solid damroo in a concentric long hollow drum.)
In cylindrical polar coordinates, we see that here r varies from r =1 to r = 2 and 6 varies
from 0 to 21t

0 V:ZH]'zdxdyE:ZH]'f(r,e)rdrdGE

" 0
:2ajjf\/ﬂrdrdeE (- Xe+y2-72-1 0 Z=Jm)

n2 1 30
= J’: Hr;Ed(rz_l)ZHde
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:2ﬁﬁ"de:4nﬁ.

Example 43: Find the volume bounded by the cylinder x?> + y?> = 4 and the planes y + z
=4and z=0. [KUK, 2000; MDU, 2002; Cochin, 2005; SVTU, 2007]

Solution: From Fig. 5.55, it is very clear that z = 4 — y is to be integrated over the circle x* +
y?2 = 4 in the xy-plane.
To cover the shaded portion, x varies from -,/4-y? to /4 -y? andy varies from - 2 to 2.
Hence the desired volume,

4-y?
V :fz _Wzdxdy y \\Z
. 5%'
= J’ZJ' 4 y dXdy .
O o
g S e
=2f2(4—y)\]4_y2dy e
= 2_[—22 %\/4—)/2 —yJ4—y2 ij X Fig. 5.55

:8f2,14 -y?dy -0

(The second term vanishes as the integrand is an odd function)

) rf
ZSM 4s1n ZD =16TL

& 2 2 25—2

ASSIGNMENT 7

1. Find the volume enclosed by the coordinate planes and the portion of the plane
IXx + my + nz = 1 lying in the first quadrant.

2. Obtain the volume bounded by the surface z = c@l—zgﬁ
a
X2 y2
the elliptic cylinder o + Wz 1
[Hint: Use elliptic polar coordinates x = arcos6, y = brsin@ ]

% and the quadrant of

D'|‘<
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5.11 VOLUME AS A TRIPLE INTEGRAL

Divide the given solid by planes parallel to the coordinate plane into rectangular
parallelopiped of elementary volume &xdydz.
Then the total volume V is the limit of the sum of all elementary volume i.e.,

V=Lt 355 xdydz :-[[ dxdy dx

dy -0
5z-0

Problems based on Volume as a Triple Integral in cartesian Coordinate System

Example 44: Find the volume common to the cylinders x> + y? = a? and x? + z? = a2

Solution: The sections of the cylinders x? + y? = a2 and x? + z2 = a2 are the circles x? + y? = a?
and x? + z2 = % in xy and xz plane respectively.

Here in the picture, one-eighth part of the required volume (covered in the 1st octant) is
shown.

Clearly, in the common region, z varies from 0 to /a2 —x2 i.e., /a2 —1x? —0y? , and x and
y vary on the circle x> + y? = a2,
The required volume

N P 2=\/a2—x2—0y2
0 V=8 r r f dz dy dx
0 y,=0 2.=0

= BJ:Jjaz_—xz(zﬂaz_ixz) dy dx \C.

:B.Ioaarommdygdx .

:Sﬁa(m)aﬁ)mdygdx (@00 x=a
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Example 45: Find the volume bounded by the xy plane, the cylinder x? + y? = 1 and the
plane x +y +z = 3.

Solution: Let V(x, y, z) be the desired volume enclosed laterally by the cylinder x* + y?> =1
(in the xy-plane) and on the top, by the plane x + y + z = 3 (= a say).

Clearly, the limits of z are from 0 (on the P
xy-plane) to z = (3- x-y) and x and y vary on the
circle X2 +y>=1

S 3x-
0 V(x.y.2) =ﬁ1_[_¢1mjf " dzdydx
2 3
r Lﬂ X y)dydx
1 [1x2 0
:I—lﬁr—ﬂ(S - X —y)ddex
1-x?

:r %y—xy—y—zdi dx
-1 ZHW

X
O | =‘r1(6><\/1—x2 —2x\/1—x2)dx

Fig. 5.57

On taking x = sin®, we get dx = do; Forx=-1,06=-

Forx=1 6= I
2
Thus,

V = I 6\/1 sin?0 25in&/1—sin29)cosede
) )
=I (600526—25|n600526)d6
-/ 2

2 2
=6><2J' coszede—ZInlzsinecoszede
0 -

Ist lInd

_ 3 w2
:12(221)%(+2005 0

‘ 2
3 -T/2

=3n+=x0=3m
3

Using meospede =% x E{g only if pis eveng and
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fn+1 (X)

J'f'(x) f1(x)dx = -

Example 46: Find the volume bounded by the ellipsoid a—+ ;;2 +% =1.

[MDU, 2000; KUK, 2001; Kottayam, 2005; PTU, 2006]

for Ist and lind integral respectively

2

Solution: Considering the symmetry, the desired volume is 8 times the volume of the ellipsoid

into the positive octant.

The ellipsoid cuts the XOY plane in the ellipse
y2

X2

a b
Therefore, the required volume lies between the

ellipsoid
2 2
zZ=¢C /1— X _Y
b2

and the plane XOY (i.e.,, z = 0) and is bounded on the
sides by the planes x=0and y =0

V= SIJ)FI vy dzdydx

=landz=0

Hence, Fig. 5.58

_ \I x2

8I 1-% dydx

O 2 0
o0 ¢ O i _¥0_a
_8Lar0 b,/cx y* dy dx %ta ing %{ FaEhine
2 —y2 2 0
v=8¢ ‘Y + 9D sint Y7 dx
bJo E 2 o Q}
aJsing formula J\/aZ - x2dx —5 2 -x2 + ; tan—1§D
=8 sm‘ll X
b+ i1
4C T[ 2 2T[C 2 X _ X2
dx b = a=hl1-2

b 2 J. % 2 b2
_ 0o 1x0
e T 3R
_4
=3 Tabc.
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dxdydz
—yi-z
of the sphere. [MDU, 2000]

taken throughout the volume

Example 47: Evaluate the integral II e -
a

Solution: Here for the given sphere x? + y? + z2 = @2, any of the three variables x, y, z can be

expressed in term of the other two, say z =+ a —x? -y?2.
In the xy-plane, the projection of the sphere is the circle x? + y? = a2,
(aZ XZ ;az XZ y2 dXdde

Thus, I= II I JZ -y -7

07 Q77
:BI:B[oa %[Oa yiLz dede 2= @-x-y)

z
alJe/e- . ng 0
_SIB[ %mlaoadygdx c Z=J2 -y
al] JZ—2 0
=38 in~t1-sin"10)dyd
J;H[;) (sm i ) yH X ] Y
////// )
=8 i 4 o === 2, . 2_ .2
- 2_[ E{[ dyde T[I 540 Ddx / Circle x2+ y2= a
Fig. 5.60
:4T[0~/a2—X2dX:4T[E1k+Va22_X2+a—225in‘1£§
U ag)

= 4n§)+a_1[5 | = -,-[2a2

Example 48: Evaluate [ (x +y+ z)dx dy dz over the tetrahedron bounded by the planes
x=0,y=0,z=0and x+y+z=1

Solution: The integration is over the region R(shaded portion) bounded by the plane x = 0,
y=0,z=0andtheplanex+y+z=1

The area OAB, in xy plane is bounded by the lines x +y =1, x=0,y =0

Hence for any pt. (x, y) within this triangle, z goes from xy plane to plane ABC (viz. the
surface of the tetrahedron) or in other words, z changes from z=0to z =1 - x - y. Likewise
in plane xy, y as a function x varies from y =0to y =1 — x and finally x varies from 0 to 1.

whence, I =[[f(x+y+2z)dxdydz

overR

rHrHBJ’H y X+y+z dzadyadx
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1-X-y

:J;ajj‘xax+y)z+z—;ao dydx

a —XD 1-x-— 2|:|
:J;I: ax+y J1-x-y)+ (Xzy)éldydx

1 1X
J'J' 1 x —y)(1+x+y)dydx

ASSIGNMENT 8

403

Fig. 5.61

1. Find the volume of the tetrahedron bounded by co-ordinate planes and the plane

X, )b/ +Z =1, by using triple integration
c

a

[KUK, 2002]

2. Find the volume bounded by the paraboloid x> + y? = az, the cylinder x? + y? = 2ay and

the plane z = 0.

5.12. VOLUMES OF SOLIDS OF REVOLUTION AS A DOUBLE INTEGRAL

Let P(x,y) be any point in aregion R enclosing an elementary
area dx dy around it. This elementary area on revolution y
about x-axis form a ring of volume,

OV = m(y + dy)? — y?] & = 2mydxdy  ...(1)
Hence the total volume of the solid formed by revolution
of this region R about x-axis is,

V:J'£2ledxdy e

Similarly, if the same region is revolved about y-axis,

then the required volume becomes
V = [[2mxdxdy 3)
2
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Expressions for above volume in polar coordinates about the initial line and about the

pole are [f2mw?sinBdrde and [[2rr2cos@drdd respectively.
R R

Example 49: Find by double integration, the volume of the solid generated by revolving

the ellipse % + i—z =1 about y-axis.

2 2
Solution: As the ellipse X—2 +Z—2 =1 is symmetrical about the
a

y-axis, the volume generated py the left and the right halves
overlap.
Hence we shall consider the revolution of the right-half ABD

2
for which x-varies from 0 to a, / 1- Z—z and y-varies from - b to b.

ad V= J'J' 2T[xdxdy
b )2 @‘/W 2 b

= 2m BB dy:Tb'LzI_b(bz—yz)dy

2

-anf [l o=y

_4_,
—3mb.

\o;{"j £

Fig. 5.63

Example 50: The area bounded by the parabola y? = 4x and the straight lines x =1 and y
=0, in the first quadrant is revolved about the line y = 2. Find by double integration the

volume of the solid generated.

Solution: Draw the standard parabola y? = 4x to which

the straight line y = 2 meets in the point P(1, 2), Fig. 5.64.
Now the dotted portion i.e., the area enclosed by

parabola, the line x =1 and y = 0 is revolved about the line

y =2

O The required volume,

NE3
v =‘[)1J; 2n(2 - y)dxdy

3

_ZHI%y—y?E dx = 21TJ' 4\/——2x
20 =
gl

(B 3/2 1OT[

:2T[
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Example 51: Calculate by double integration, the volume generated by the revolution of

the cardiod r = a(1 — cos@) about its axis. [KUK, 2007, 2009]
Soluton: On considering the upper half of the cardiod, because due to symmetry the lower
half generates the same volume. y
T a(1l-cosB) i
0 II 2mr2sinOdr do

r3

= 2T[I

0 =172
a(1-cosB)
sin8de 0= o 6=0

ZLa 1—cosessined6
3 Jo

_2mdd |(1 —0059)4 |TI _8md?

= =55

3 ‘ 4 ‘0 Fig. 5.65
Example 52: By using double integral, show that volume generated by revolution of

cardiod r = a(1 + cos@) about the initial line is %Tw‘

Solution: The required volume

1 a(l+cosB)

IJ' 212 sinBdr do

Y
3 (1+cos6) 4
= ZHIT[D sin@de =12
N1
:2TtJ; a@(1+cosB)’sin6de 0=n 6=0
o O (1+cos@) O
= g 0
3 A 4 B
2ma’ 240_ 8ma’ :
_ _2tH Fig. 5.66
3 @ 4H 3 N

ASSIGNMENT 9

1. Find by double integration the volume of the solid generated by revolving the ellipse
X2 Y2 .
po + Z—z =1 about the X-axis.

2. Find the volume generated by revolving a quadrant of the circle x* + y? = a°, about its
diameter.

3. Find the volume generated by the revolution of the curve y?(2a — x) = x3, about its
asymptote through four right angles.

4. Find the volume of the solid obtained by the revolution of the leminiscate r?> = a?cos26
about the initial line. [Jammu Univ., 2002]
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5.13. CHANGE OF VARIABLE IN TRIPLE INTEGRAL
For transforming elementary area or the volume from one sets of coordinate to another, the
necessary role of ‘Jacobian’ or ‘functional determinant’ comes into picture.

(a) Triple Integral Under General Transformation

o(x,y,2)
f(x,y,z)dxdydz = (u,v,w)] ] dudvdw; where J = —""""~(£0)
Here R({{{ 5 Ry, V{)ﬂc a(u, v, w) ...()

Since in the case of three variables u(x, y, z), v(X, y, z), w(X, Y, z) be continuous together
with their first partial derivatives, the Jacobian of u, v, w with respect to x, y, z is

defined by
ou v w
0xXx O0X 0X
ou v w
dy oy Ody
ou ov ow
0z 0z 0z

(b) Triple Integral in Cylindrical Coordinates

Here f(x,y,z)dxdydz = ,8,2)|J|drd8dz, where |J] =r
IS ]q

The posthion of a point P in gpace in cylindrical coordinates is determined by the
three numbers r, 8, z where r and 6 are polar co-ordinates of the projection of the point
P on the xy-plane and z is the z coordinate of P i.e., distance of the point (P) from the
xy-plane with the plus sign if the point (P) lies above the xy-plane, and minus sign if
below the xy-plane (Fig. 5.67).

Z
Z
NB
iV
s P N
P(X’ y’ z) T t_}_l\
M
z
0B
(o) Y o)1 vy
0 r 5 %/
R
4 y Q r A8
X Ar
X
Fig. 5.67 Fig. 5.68

In this case, divide the given three dimensional region R* (r, 6, z) into elementary
volumes by coordinate surfaces r = r;, 8 = 6;, z = z, (viz. half plane adjoining z-axis,
circular cylinder axis coincides with Z-zxis, planes perpenducular to z-axis). The
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curvilinear ‘prism’ shown in Fig. 5. 68 is a volume element of which elementary base
area is r ArAB and height Az, so that Av = r Ar A8 Az.

Here 0 is the angle between OQ and the positive x-axis, r is the distance OQ and z is
the distance QP. From the Fig. 5.62, it is evident that

X =rcosh, y = rsind, z =z and so that,

coso sin@ 0

=|-rsin® rcos® O0O|=r
(2
oy 0 0 1 @)

JDx,y,zD

Hence, the triple integral of the function F(r, 6, z) over R” becomes

Vv :Ii{rvevzl):(r,e,z)rdrdedz ...(3)

(c) Triple Integral in Spherical Polar Coordinates

Here V =[[[f(xy.z)dxdydz=  (f.6,9)|drdedy, where |J] = r’sin®
R R

The position of a point P in space in spherical coordinates is determined by the
three variables r, 6, @ where r is the distance of the point (P) from the origin and so
called radius vector, 0 is the angle between the radius vector on the xy-plane and the
x-axis to count from this axis in a positive sense viz. counter-clockwise.

For any point in space in spherical coordinates, we have
0<r<o,0<0=smM0=<@<2nt

Divide the region ‘R’ into elementary volumes AV by coordinate surfaces, r = constant
(sphere), 6 = constant (conic surfaces with vertices at the origin), ¢ = constant (half
planes passing through the Z-axis ).

To within infinitesimal of higher order, the volume element Av may be considered
a parallelopiped with edges of length Ar, r A8, rsin® A@. Then the volume element
becomes AV = r?sin® Ar A8 A@.

z S
V4
=4
S
[ . Ar
<\JQ(P |
P (x, ¥,.2) 7SI~ ~ /A R Q
P7N
0 r | rA\@
|
Y JAtC) 1 Q
V4 11
S 0 (B z
“——
o Y : I
o) Pl
() “\~ - 1! >
X 90° x/ o T 3G-r 4
A /490 Se |
L e~
/ Y y !
X X
Fig. 5.69 Fig. 5.70
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For calculation purpose, it is evident from the Fig. 5.69 that in triangles, OAL and

OPL,

X = OL cos@ = OP cos(90 — 6) . cos@ = rsind cos,

y=0L sing= 0P sin@.sin@=rsin@sing,

z=rcos®.

alx z) sinBcos@ sinBsing  cosO

J=———~=|rcos@cos® rcosBsing -rsind =r’sin@

Thus, a(r.6,0) A .
9@ |-rsinBsing rsinBcosp 0

Problems Volume as a Triple Integral in Cylindrical Co-ordinates

Example 53: Find the volume intercepted between the paraboloid x? + y? = 2az and the
cylinder x? + y? — 2ax = 0.

Za
Solution: Let V be required volume of the cylinder
x? + y? — 2ax = 0 intercepted by the paraboloid x? + y? = 2az.
Transforming the given system of equations to polar- ! x*+y?=2az
cylindrical co-ordinates. ::: A Paraboloid
|
X =rcos6 ii:
Let Y =rsinB0sothat V(x,y,2)=V(r,8,2) 1y/
z=12 H (@ 0)f o+ >
9 Y

X2+ yZ—Zax: 0

By above substitution the equation of the paraboloid becomes

r - . lind
r2=2az O 2 =, and the cylinder X2 + y2 = 2ax gives eylinder
2 _2arcosB =0 O r(r- 2acosB) =0 with r =0 and _
r = 2acos6. Fig. 5.71

2

r . .
Thus, it is clear from the Fig. 5.71 that z varies from 0 to % and r as a function of 0 varies

from 0 to 2acosB with 6 as limits 0 to 2t Geometry clearly shows the volume covered under

the +ve octant only, i.e. %th of the full volume.
8=1/2 r=2acos® _z=r’/2a
=V' = I r r rdzdrdd, as|J|=r
(XyZ) (r8.2) r=0 2=0

/2 [] _2acos8 "2/23

J' B[' zO rdrEdG
_4-[11/25_230089_ rade

2acosf

/2 4
1 r 40

:4_-[ L
2aJo 4

0
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/2
= 4i 24a cos*0do

409

Example 54: Find the volume of the region bounded by the paraboloid az = x? + y? and
the cylinder x? + y? = b2 Also find the integral in case when a=2and b = 2.

Solution: On using the cylindrical polar co-ordinates (r, 8, z) with x = rcos6, y = rsin@, so

2
that the equations of the cylinder and that of the paraboloid are r=band z = L respectively.
a

See Fig. 5.72, only one-fourth of the common volume is shown.

2
. . . r . .
Hence in the common region, z varies from z=0to z=-— and r and 0 varies on the circle

T
from 0 to b and 0 to 5 respectively.

O The desired volume

V=4Lﬂ2ﬁﬁ2/ardrd6dz
:4I:/2§'Obrdr§(/adz%9
_ v2[] r20
= J; Hroj H—adrade

J,n/zljzth
4 V2 2
A by o
a 4 | 2a
As a particular case, when a =2, b = 2, then
4
V:ﬂ:M[
2x%x2

Problmes on Volume in Polar Spherical Co-ordinates

a

Z 4

| x%+ y2= az
T = (Paraboloid)

<\

X2+ y?= b2
(cylinder)

Fig. 5.72

Example 55: Find the volume common to the sphere x2 + y? + z2 = a? and the cone x? + y? = 72

OR

Find the volume cut by the cone x? + y? = z2 from the sphere x? + y? + z2 = a2,
[NIT Kurukshetra, 2010]
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Solution: For the given sphere, x? + y? + z2 = a% and the cone x? + y? = 72, the centre of the
sphere is (0, 0, 0) and the vertex of the cone is origin. Therefore, the volume common to the

two bodies is symmetrical about the plane z = 0, i.e. the required volume, V =2[[[dxdydz

X =rsinBcos
In spherical co-ordinates, we have y =rsin@sin@J=r?sin®

z=rcosb H
Thus, x? + y> + z2 = a®> becomes r’=a’ie,r=a
and x% + y? = 7% becomes r? sin?0 (cos’@ + sin’g) = r’cos?0
ie., sin20 = cos?0 i.e. B = V4. Z 4

Clearly, the volume shown in the figure (Fig. 5.73) is
one-fourth, i.e. in first quadrant only and, in the common
region,

r varies from 0 to a,

O varies from 0 to —

N|:|-l>

O
s
O
@varies from 0 to B
g

Hence the required volume,

V= 2§1L"/2L"/4Larzsinedrdedcpg
w2 /4

J' J' Elj'rzdrgsmeded(p

= 8J(; J(; Egasineded(p

8 T2
= a30 [-cose]l*

3

8 al 1 0pv?
=S@g-—gf d

3 0

Npis)
- 4ma @-LD Fig. 5.74
3 NAE
Alternately: In polar-cylindrical co-ordinates, intersection of the two curves x? + y? + z2 = &2
a2

and x> + y?>=Z?results in 22+ z2=a? or 722 ==

. . a
Further, x2+y2 =g —72 = a2 - a— a— ar :i, i.e. r variesfromO0to —(—
.= 2 2 N
i a/J—
Hence, V= Zr a? —r? —r)rdrde
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| . P lies on the cone whereas Q lies on the sphere as a function of (r, 0)

a/f

—ZI rva? —r2—r2 J' dGHdr
5 O 1 10 4 30
01 372 P2 i 2 _ 2 _r2); 2 _ 2
=4n—=(a2 -r2)" " - — sincer(a® —ro )2 =—3r(a” —-r —dla* -r° 2
F i -2 e e v = (e - e el -
:4T[|:| la_S_la_(i a_SD
H322 3242 3H
:4“33%_15
3 § 2
Example 56: By changing to shperical polar co-ordinate system, prove that
_T N 0
————— —dxdydz-—abc where Vv = fAx,y,z +X +% <1
JII-% ; o) LBl
2
Solution: Taking E:UB sothat—+z—+2_<1 O w+v+w<l
a a c?
y __H
__VID
b D
S =wO
c 8
Now transformation co-efficient, ox 0x O0x
du ov ow a 00
|J|:g—y g_y g—y:o b 0|=abc
u ov ow
oz 0z 22| 19°°
du odv ow

. V= J'IJ'\/l——————dxdydz

I”m (abc)dudvdw

UVW

To transform to polar spherical co-rodinate system, let u=rsinBcosq,
v=rsinBsing O
W =rcos@ H

Then Vi v w = (U, v, w): v+ vZ+w?<1,u20,v20, w20} reduces to
Viieg=1{r’<l ie, 0<r<1,0<0<m0<@<2mg
0 ”j«/l u? - vZ —w?abcdudvdw
UVW
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j bc\/ 1-r?|Jjdrdéde  where |J] = r?sin®
(r.6

A

=D

(p:2n|:| n|:|

0 Viieg =4 \/ -r rzdrHsm edead(p
Now put r = sint so that dr = costdt and for r =0, t =0, H

T

r=4,t=—

U
2H
12
0 rg(p—ach'2 ar a[n costsmztcostdtasmed%d(p

:z;xbc‘l'zngl'ﬂt(2 DH2-1) n [smedegd(p

i L il L
0 o2+2)(4-2) 2
-abcr]TD Dlln mGdGHd(P

T[abcr [-cos6]} do

Tabc mabc 2" Teabc
= 2do= de= .
16 Jj ? 8 Jj ¢ 4

Example 57: By change of variable in polar co-ordinate, prove that

J) 1-x?-y? dzdydx TP

JI-x-y2-22 8’

OR

Evaluate the integral being extended to octant of the sphere x* + y? + z2 = 1.

OR
Evaluate above integral by changing to polar spherical co-ordinate system.

Solution: Simple Evaluation:

“2 T g
=1 d
r X 0 N

1
J(l—xz—y)—z2 N

T2 Lz Jl x*=y? []
I—dexJ; ﬂsm ; Edy

Treating

0
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rdx sinl —=—
JI-X2-y? —y2
rdx Ell‘—ogdy

= X[ Hy) ™ Fx

W1-x2-y2 []
0
Edy, as a=.,1-x>-y?

0

—T[J'lxll—x2 dx
2Jo
Ok 2 u] [2 —x2 2
SRS ks O += Lsin- X|j, using [Va —x2dx = & X L & gjp1 X
20 2 2 2 2 a
_MGp, lnO T
28 22H 8

By change of variable to polar spherical co-ordinates, the region of integration
V={xy2);x+y?+72<1;x20,220,y20}

becomes I=C(r,B,¢);r’<1,ie0<sr<10<06< g OS(pslzT
X =rsinBcosg,
where y =rsinBsingJ
z=rcos@ H
a(x.y.z) - _ -
Now J= W = coefficient of transformation = r#sin®.

hene J-J-J-\/l dxd_ydz_22 JJT/ZJJT/ZI‘r smed rd8do

_ 2 w2[] | [P r2 0. d
I—J’O d(pJ'0 Hslnea[oimadrade

Let r = sint so that dr = cost dt. Further, when r =0, t =0, H
g

=1, t=—
28

0 :.szd(pj('J smedeI S'C':Stﬂ:ostdt

:J(;H/Zd(pﬁ) desine% EI;—E
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T AVYR, V2
=2, d(pL sin0do

T /2 _ 2
—4J; d(-cos8)

0

J{” _T
47, 8
. X2y 22 :
Example 58: Find the volume of the ellipsoid —2+§+—2: 1 by changing to polar co-
a C

ordinates. [PTU, 2007]

Solution: We discuss this problem under change of variables.

a(x.y.z) _

=X, =ab
a(X.,Y,2) e

Take

@ | X
o<

=Y, -7 so that J =
C

O The required volume,
V =[[[dxdydz :IH|J|dXdeZ

= abc[[[dXdYdZ, taken throughout the sphere X? + Y2+ Z2 = 1.

Change this new system (X, Y, Z) to spherical polar co-ordinates (r, 8, ¢) by taking

X =rsinBcosq,
Y =rsin®sin@ [ g4 that J= o(X.Y.Z) _ r2sin@,
Z =rcos@ B a(r,6,¢)
V = abef[[|J|drdéde=abc  fJ§in6drdode
taken throughout the sphere r”2’<1, ie. 0<r<1,0<0<m0<@<2m
On considering the symmetry,

/2 /2 1
V = ahc EBJ; %[' a rzdrasinedegd(p
0 0

w2l v 3l 0
:8ach' EJ' —| sin6dedeg
0 o 3, O
_8 v /2
—3ach;) [-cos6]) “de
8 2
=—abc 10
3%, 1o
w2
= §abc<4 = §abc£ = ﬂTlabc
37, 3 2 3
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Miscellaneous Problem
Example 59: Evaluate the surface integral | = [[(x3dydz + X%y dzdx + x’zdxdy).
S

where S is the surface bounded by z=0, z=b, x? + y2 = @
OR

By transformation to a triple Integral, evaluate | = ”(x3dy dz + x2ydzdx + x?zdx dy), where
S
S is the surface bounded by z=0, z=h, x* + y? = a2,

Solution: On making use of Green’s Theorem,
b b

I =I_aa-[) (,/a2 -y? )3 dzdy —J'_aaj; (—,/a2 -y? )3 dzdy

+fa-[)b x2\Ja® — x?dzdx —J'_aa-[_aax2 (—\/a2 - X )dz dx
fEY 2 _\2 _r JEY
+J:J'_W(a y?)bdxdy J'_aJ'_Wdedy
Using Divergence Theorem,

I :”J'(sz + X2 +x2)dxdydz

\Y

a [ lva-x% 1.b 0. 0O
=4 2
_fo Q:) %’O dszyEEX dx
Saf T bay e d
= J;)go y%fix X

= ZObJ:XZ\/aZ - x2dx

= Ena“b,

Note: As direct calculation of the integral may prove to be instructive. The evaluation of the integral can be
carried out by calculating the sum of the integrals evaluated over the projections of the surface S on the co-
ordinate planes. Thus, which upon evaluation is seen to check with the result already obtained. It should be
noted that the angles a, 3, y are mode by the exterior normals in the +ve direction of the co-ordinate axes.
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Assignmet 1

Ore 0
1. HzH
3 L
" ab

Assignment 2
afx ad
———d
e Ve

2. J:J'jj_x; f (x y)dydx

Assignment 3

422 3. (4 4
3 2. ET[(b -a )
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1 .
—-sQ. units
2. 10 q
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m’ .
—= units
L 8

2 .
—— units
3 9
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1.1

3. 8m

Assignment 7

1
1. 6Ilmn

(Canswers )

a4
2. 3
6 n
4
asina yldosa a \/t’ﬂz—y2
3. [ f f(xy)dxdy+ [ [f(xy)dxdy
a 0 asina 0

ma Y la
4 J(') J'% f(x,y)dxdy+Imaf(x,y)dXdy

s eBre

—as T+ 2 it
2. 12( ) units

T .
— units
4. 4

2 %aS bc(3 + 2ab? + 2ac?)

8 19
—log2 -—
4. 9 J 9

On _ 1301
g 240
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Assignment 8

3m’
1. abc/6 2.
2
Assignment 9
41ab? 2 _,
2. —Ta
3 3
m® 1 10
3 —=log(~2 +1)-=
3. 2rPa Ty g(vZ +1) 3L
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